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Generalizing the Equal Area Zones Property of
the Sphere
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Abstract. We construct and study n-dimensional hypersurfaces in (n + 1)-
dimensional Euclidean space that satisfy a higher dimensional generalization
of the equal area zones property of the sphere (that the surface area of a
zone between two parallel planes depends only on the distance between the
planes). These new hypersurfaces are hypersurfaces of revolution. The relative
simplicity of their construction allows us to describe them in great detail,
revealing some interesting curiosities and motivating further questions.
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1. Introduction

It is well known that the surface area of a zone sliced out of a sphere by two
parallel planes depends only on the distance between the planes and not on the
location of the zone, and is therefore proportional to that distance. This equal area
zones property of the sphere dates back to Archimedes and is a standard calculus
exercise (see [2]), and it makes an appearance in recreational mathematics in the
solution of an old brain teaser about covering a disk with rectangles (see [1]). But
it also has been the object of more serious study.

In 1951 Stamm [3] proved that this property characterizes the sphere among
smooth closed convex surfaces. More precisely: if such a surface satisfies the prop-
erty that the surface area of a region sliced from it by a pair of parallel planes
is proportional to the distance between the planes, then the surface is a sphere.
Moreover, this is the case even if the constant of proportionality is permitted to
vary with the direction normal to the cutting planes, which we will call the slicing
direction.
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To the best of our knowledge, analogous properties for hypersurfaces in higher
dimensional Euclidean spaces have not been investigated. Here we take a first
step in this inquiry by looking among higher dimensional analogs of surfaces of
revolution. We find that for each n ≥ 2, there is just one smooth n-dimensional
hypersurface of revolution in n + 1 dimensional Euclidean space that satisfies a
generalized equal area zones property. We call this hypersurface the equizonal n-
ovaloid, EOn. (Curiously, it is a C∞ manifold when n is even, but only C(n−1)/2

when n is odd.)
For n = 2, the equizonal n-ovaloid is an ordinary sphere, but for n > 2 it

is not and it satisfies a generalized equal area zones property in only one slicing
direction. So the fact that the two dimensional sphere satisfies the equal area zones
property in all slicing directions is a unique feature of three dimensional Euclidean
space. We mensurate the equizonal n-ovaloids completely and find that, in some
respects, they more nearly satisfy higher dimensional analogs of the properties
of the sphere derived in Archimedes’ On the Sphere and the Cylinder than do
n-dimensional spheres. Finally, we pose some questions for further study.

2. Construction of the equizonal ovaloids

We define a hypersurface of revolution to be an n-dimensional hypersurface imbed-
ded in R

n+1 whose cross sections orthogonal to a particular line, which we label
the x-axis, are (n−1)-dimensional spheres centered on the x-axis, as illustrated in
Figure 1. There the notation Sn−1(f(x)) indicates an (n − 1)-dimensional sphere
of radius r, where r is a function f(x) that we call a profile function. We wish to
determine which such hypersurfaces satisfy the generalized equal area zones prop-
erty that the n-volume sliced from the hypersurface by two hyperplanes x = a and
x = b depends only on the distance between the hyperplanes, b − a.

The (n − 1)-volume of Sn−1(r) is given by

vol
[
Sn−1(r)

]
=

2π
n
2

Γ
(

n
2

)rn−1 , n ≥ 2

where Γ denotes the gamma function

Γ(z) =
∫ ∞

0

e−ttz−1 dt , Re(z) > 0 .

So the n-volume of a slice of the hypersurface between x = a and x = b is given
by

S =
∫ b

a

2π
n
2

Γ
(

n
2

)
[
f(x)

]n−1
√

1 +
[
f ′(x)

]2 dx . (1)

If S depends only on b−a, and not on the location of the slice, then the integrand
must be a positive constant. That is, for some c > 0,

[
f(x)

]n−1
√

1 +
[
f ′(x)

]2 = c .
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Figure 1. Schematic representation of an n-dimensional hyper-
surface of revolution.

Rescaling the coordinates by x → x/C and f → f/C where C = c1/(n−1) yields
the same equation but with c = 1, so C merely represents a linear scaling factor.
Taking c = 1 and squaring both sides of the equation yields:

[
f(x)

]2n−2 +
[
f(x)

]2n−4[
f(x)f ′(x)

]2 = 1 . (2)

The change of variables v = f2 reduces this to a separable equation which can be
solved by quadrature. The solutions are f(x) = 1 (representing a hypercylinder of
radius 1) and

x =
1
2

∫ [f(x)]2

0

t
n−2

2

√
1 − tn−1

dt + d , 0 ≤ f(x) ≤ 1 (3)

where d is a constant representing a horizontal shift along the x-axis, so that we
may as well take d = 0.

We call the n-dimensional hypersurface of revolution generated by the func-
tion f defined by (3) the unit equizonal n-hemisphere, since its largest (n − 1)-
dimensional spherical cross section has radius 1.

Compact hypersurfaces of revolution of C1 smoothness satisfying the gener-
alized equal area zones property in the x-direction can be obtained by capping
an n-dimensional hypercylinder of radius 1, and of any length, on each end with
a unit equizonal n-hemisphere. In the special case where the hypercylinder has
length zero, we call the resulting hypersurface the unit equizonal n-ovaloid, and
denote it EOn(1); see Figure 2 where

xmax = f−1(1) =
1
2

∫ 1

0

t
n−2

2

√
1 − tn−1

dt .
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Figure 2. A 2-dimensional representation of a unit equizonal
n-ovaloid EOn(1).

(Note that as n increases, EOn(1) becomes increasingly oblate. Because the (n−1)-
volume of its cross section Sn−1(f(x)) increases in proportion to [f(x)]n−1, the
graph of the profile function f must level off more and more rapidly as n increases
in order to maintain the generalized equal area zones property.)

Scaling the linear dimensions of EOn(1) by a factor of r produces a 1-
parameter family of equizonal n-ovaloids which we denote EOn(r). Surprisingly,
the smoothness of an equizonal n-ovaloid depends on its dimension n.

Proposition 1. For even n > 2, the only n-dimensional compact C∞ hypersur-
faces of revolution which satisfy the generalized equal area zones property are the
equizonal n-ovaloids. For odd n > 2, there are no n-dimensional compact C∞ hy-
persurfaces of revolution which satisfy the generalized equal area zones property,
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and the smoothest such compact hypersurfaces of revolution are the equizonal n-
ovaloids which are C(n−1)/2.

Proof. Inserting the Maclaurin series

1
2

1√
1 − u

=
1
2

+
∞∑

k=1

1 · 3 · 5 . . . (2k − 1)
2k+1k!

uk

into (3) quickly yields

f−1(y) =
1
n

yn

[

1 +
∞∑

k=1

(
1 · 3 · 5 . . . (2k − 1)

2k

)(
n

n + (2n − 2)k

)
(y2n−2)k

k!

]

.

So for any n > 2, the integral in (3) can be expressed as a Taylor series about
f = 0 whose leading term is (1/n)fn and whose radius of convergence is 1. So x is
a C∞ function of f for 0 ≤ f < 1, and there are only two regions of an equizonal n-
ovaloid which might have less than C∞ smoothness: the left and right ends where
the profile curve meets itself coming from n orthogonal directions and the seam
where the two equizonal n-hemispheres comprising the equizonal n-ovaloid meet,
which is a copy of Sn−1(1).

At the ends, the projection onto the equizonal n-ovaloid of each of the n
coordinate axes which is orthogonal to the x-axis looks like the curve x = |f |n,
which for even n > 2 is a C∞ function of f and for odd n > 2 is a C(n−1)/2 function
of f . At the seam the smoothness of the equizonal n-ovaloid is determined by the
smoothness of the joint in its profile curve, where the graph of f is reflected through
the line x = xmax = f−1(1).

We need to know how many derivatives the profile function f has at xmax.
Though we have no useful formula for f , this information can be teased out of (2).
From (2) itself, it is clear that limx→x−

max
f ′(x) = 0, so the profile curve is at

least C1. Differentiating (2) yields

(n − 1)
(
1 +

(
f ′(x)

)2
)

+ f(x)f ′′(x) = 0 (0 < x < xmax)

and differentiating again yields

(2n − 1)f ′(x)f ′′(x) + f(x)f ′′′(x) = 0 (0 < x < xmax)

from which respectively it follows that limx→x−
max

f ′′(x) = 1 − n and
limx→x−

max
f ′′′(x) = 0. This pattern holds up for higher derivatives. Repeated dif-

ferentiations of (2) yield S + f(x)f (m)(x) = 0 for 0 < x < xmax, where S is a sum
of terms which look like cf (i)(x)f (j)(x) for 0 < i, j < m such that when m is odd,
every term of S has an odd derivative factor. Inductively it follows that f has left
hand derivatives of all even orders at xmax, and that its left hand derivatives of all
odd orders are 0 at xmax, so that the profile curve is C∞ at the joint. �
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3. Mensuration formulas for the equizonal ovaloids

In order to mensurate the equizonal ovaloids, we need an exact value for the
quantity

xmax = f−1(1) =
1
2

∫ 1

0

t
n−2

2

√
1 − tn−1

dt . (4)

This can be obtained using the beta function:

B(p, q) =
∫ 1

0

tp−1(1 − t)q−1dt , Re(p) > 0 and Re(q) > 0

via the identity

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

. (5)

Making the substitution u = tn−1 in (4) and using (5) and the fact that Γ(1/2) =√
π yields

xmax =
1

2n − 2
B

(
n

2n − 2
,
1
2

)
=

√
π

(2n − 2)

Γ
(

n
2n−2

)

Γ
(

2n−1
2n−2

) .

Now it is easy to compute the n-volume of the unit equizonal n-ovaloid
EOn(1) from the integral in (1) since the integrand is constant. Scaling the result
by a factor of rn yields a beautiful formula:

Proposition 2. For n ≥ 2, the n-volume of the equizonal n-ovaloid EOn(r) (whose
largest (n − 1)-dimensional spherical cross section has radius r) is

vol
[
EOn(r)

]
=

2π
n+1

2

(n − 1)

Γ
(

n
2n−2

)

Γ
(

n
2

)
Γ

(
2n−1
2n−2

) rn .

We can also compute the (n + 1)-volume of the region in R
n+1 enclosed by

EOn(r), which we call an equizonal (n + 1)-ball and denote EBn+1(r). Since the
n-volume of Bn(r) is given by

vol
[
Bn(r)

]
=

2π
n
2

nΓ
(

n
2

)rn , n ≥ 2

it follows that

vol
[
EBn+1(1)

]
= 2

∫ xmax

0

2π
n
2

nΓ
(

n
2

)
[
f(x)

]n dx .

We have no formula for f , but we can appeal to an old calculus trick: if y = g(x)
is a nonnegative, increasing function on [0, b] and g(0) = 0, then

∫ b

0
g(x) dx =

bg(b) −
∫ g(b)

0
g−1(y) dy. Applying this to g(x) = [f(x)]n on [0, xmax] yields

vol
[
EBn+1(1)

]
=

4π
n
2

nΓ
(

n
2

)
[
xmax −

∫ 1

0

f−1
(
y

1
n

)
dy

]
.
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Using the integral expression (3) for f−1 we have
∫ 1

0

f−1
(
y

1
n

)
dy =

1
2

∫ 1

0

∫ y2/n

0

t
n−2

2

√
1 − tn−1

dt dy

and interchanging the order of integration this can be written as

1
2

∫ 1

0

∫ 1

tn/2

t
n−2

2

√
1 − tn−1

dy dt

=
1
2

∫ 1

0

(1 − t
n
2 )t

n−2
2

√
1 − tn−1

dt = xmax −
1
2

∫ 1

0

tn−1

√
1 − tn−1

dt .

The substitution u = tn−1 converts this last integral into a beta function:

1
2

∫ 1

0

tn−1

√
1 − tn−1

dt =
1

2n − 2
B

(
n

n − 1
,
1
2

)
=

1
2n − 2

Γ
(

n
n−1

)
Γ

(
1
2

)

Γ
(

3n−1
2n−2

)

and yields another nice formula:

Proposition 3. For n ≥ 2, the (n+1)-volume of the equizonal (n+1)-ball EBn+1(r)
enclosed by EOn(r) is

vol
[
EBn+1(r)

]
=

2π
n+1

2

n(n − 1)

Γ
(

n
n−1

)

Γ
(

n
2

)
Γ

(
3n−1
2n−2

)rn+1 .

Of course when n = 2, the formulas in Propositions 2 and 3 reduce to 4πr2

and 4πr3/3, respectively.

4. Asymptotic behavior of EOn and EBn+1 as n → ∞
Using the above mensuration formulas, we observe the following curiosities.

The oblateness of EOn. Note that limn→∞ xmax = 0. That is, in the limit as
n → ∞, EOn(1) becomes more and more oblate, looking more and more like
two copies of the unit n-dimensional ball Bn(1) glued together back to back in
(n+1)-dimensional space. So one might expect vol[EOn(1)] to approach twice the
n-volume of the unit n dimensional ball Bn(1) as n → ∞. But in fact

vol[EOn(1)]
vol[Bn(1)]

=
√

π
n

n − 1

Γ
(

n
2n−2

)

Γ
(

2n−1
2n−2

) → π as n → ∞ .

The n-volume of EOn(1). Just as the n-volume of the unit n-dimensional sphere
Sn(1) increases as n increases from 1 to 6 and decreases monotonically to 0 as n
increases from 6 to ∞, the n-volume of EOn(1) increases as n increases from 2
to 5 and decreases monotonically to 0 as n increases from 5 to ∞.



8 J. Dodd and V. Coll J. Geom.

The (n + 1)-volume of EBn+1(1). Unlike the (n + 1)-volume of the unit (n+1)
dimensional ball Bn+1(1) which increases as n + 1 increases from 3 to 6 and
decreases monotonically to 0 as n + 1 increases from 6 to ∞, the (n + 1)-volume
of EBn+1(1) decreases monotonically to 0 as n increases from 2 to ∞.

The “surface area to volume” ratio for EOn. For equizonal ovaloids, the ratio
vol[EOn(1)]/vol[EBn+1(1)] behaves much like the corresponding ratio
vol[Sn(1)]/vol[Bn+1(1)] for spheres in that vol[Sn(1)]/vol[Bn+1(1)] = n + 1 for
n ≥ 2 and vol[EOn(1)]/vol[EBn+1(1)] = π

2 n + o(n) as n → ∞. So both ratios are
asymptotically proportional to n as n → ∞.

Archimedean ratios. Archimedes was particularly pleased to discover that if a
sphere is inscribed in a cylinder, the ratio of the surface area of the sphere to the
total surface area of the cylinder and the ratio of the volume enclosed by the sphere
to the volume enclosed by the cylinder are both 2/3. It is easy to check that if the
unit n-dimensional sphere Sn(1) is inscribed in the n-dimensional hypercylinder
[0, 2] × Sn−1(1) then the ratio of the n-volume of Sn(1) to the n-volume of the
hypercylinder is the same as the ratio of the (n + 1)-volume enclosed by Sn(1) to
the (n + 1) volume enclosed by the hypercylinder, namely

vol[B(n+1)(1)]
2 vol[Bn(1)]

=
√

π

2

(
n

n + 1

)
Γ(n/2)

Γ((n + 1)/2)

which is 2/3 when n = 2 but as n → ∞ decreases monotonically towards a limit
of 0.

In contrast, if the unit equizonal n-ovaloid EOn(1) is inscribed in the n-
dimensional hypercylinder [0, 2xmax] × Sn−1(1) then the ratio of the n-volume of
EOn(1) to the n-volume of the hypercylinder is

vol[EOn(1)]
2 vol[Bn(1)] + 2xmax vol[Sn−1(1)]

=
1

1 + 2√
π

(
n−1

n

)
Γ

(
2n−1
2n−2

) /
Γ

(
n

2n−2

)

which is 2/3 when n = 2 and as n → ∞ decreases monotonically towards a limit
of π/(π + 2) ≈ ..611, staying remarkably close to the classical Archimedean value
of 2/3 for all values of n. Similarly, the ratio of the (n + 1)-volume enclosed by
EOn(1) to the (n + 1)-volume enclosed by the circumscribed hypercylinder is

vol[EB(n+1)(1)]
2xmax vol[Bn(1)]

=
Γ

(
n

n−1

)
Γ

(
2n−1
2n−2

)

Γ
(

3n−1
2n−2

)
Γ

(
n

2n−2

)

which is 2/3 when n = 2 and as n → ∞ decreases monotonically towards a limit
of 2/π ≈ .637. Though exact equality of these two ratios is not maintained for
n > 2, both ratios stay remarkably close to 2/3 for all values of n.
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5. Questions

Based on the some of the properties of the equizonal ovaloid that we have presented
above, we would like to pose the following questions:

1. For odd n ≥ 3: does there exist an n-dimensional closed, convex surface in
R

n+1 satisfying the generalized equal area zones property in one or more
slicing directions and having C∞ smoothness? (That is, are the singularities
exhibited by EOn for odd n an accident of our particular construction, or do
they indicate a general phenomenon?)

2. For any n ≥ 3, does there exist an n-dimensional closed, convex, C∞ hyper-
surface in R

n+1 satisfying the generalized equal area zones property in more
than one slicing direction, or (best of all) in all slicing directions?
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